Specifying and Verifying
Hardware-based Security
Enforcement mechanisms

Thomas Letan

Laboratoire Sécurité du Logiciel (LSL)
ANSSI

January 30, 2020

Specifying and Verifying
Hardware-based Security
Enforcement mechanisms

Thomas Letan

Laboratoire Architectures Matérielles et logicielles (LAM)
ANSSI

January 30, 2020

Security of Low Level Software Components

App. App. Software components of

e Various origin

Operating System e Various quality

e Various level of trust

BIOS

2/23

Security of Low Level Software Components

App. App. Software components of

e Various origin
Operating System e Various quality

e Various level of trust

BIOS

Each layer has to protect itself against upper
(untrusted) layers

2/23

Hardware-based Security Enforcement Mechanisms

Trusted Software Components
configure
Hardware Components
to constrain
Untrusted Software Components
wrt.
Security Policies

3/23

Hardware-based Security Enforcement Mechanisms

Trusted Software Components
configure
Hardware Components
to constrain
Untrusted Software Components
wrt.
Security Policies

3/23

Operating System
sets up
Page Tables and Rings
to constrain
End-user Applications
to remain
Inside a Sandbox

The BIOS

The BIOS is provided by the hardware manufacturer
Boot sequence Initialize the hardware platform
Runtime Keep the platform in a working state

e Shall continue to operate even in presence of a
compromised software stack

e Most privileged software components of the
stack

BIOS is the Root of Trust

4/23

BIOS HSE Mechanism

SMM The most privileged x86 operating mode

SMRAM Dedicated memory region of the DRAM
protected by the Memory Controller

SMI Hardware, non-maskable interrupt

5/23

BIOS HSE Mechanism

SMM The most privileged x86 operating mode

SMRAM Dedicated memory region of the DRAM
protected by the Memory Controller

SMI Hardware, non-maskable interrupt

SMRAM : and
SMI :

5/23

Selection of SMM Vulnerabilities

Prior 2008 Incorrect configuration of SMRAMC
2009 SMRAM Cache Poisoning Attack
2014 Sinkhole
2015 Speed Racer, SENTER Sandman

Until today Incorrect configuration of BIOS_CNTL

6/23

Selection of SMM Vulnerabilities

2009 SMRAM Cache Poisoning Attack
2014 Sinkhole
2015 Speed Racer, SENTER Sandman

Compositional Attacks

e Only legitimate (wrt. specifications) use of
hardware features

e Flaws in hardware specifications

6/23

Selection of SMM Vulnerabilities

Prior 2008 Incorrect configuration of SMRAMC

Until today Incorrect configuration of BIOS_CNTL

Misconfiguration Vulnerabilities
e Hardware features are available
e But are not correctly used by manufacturers

6/23

Challenges of HSE Mechanisms

A HSE mechanism implementation is correct if
e Hardware components expose sound APIs

e Trusted software components correctly use
them

In between several verification domains
e Hardware verification
e Machine code verification

e System software verification

7/23

Goal: Formal Specifications

Formal specification and verification of HSE
mechanisms to address

1. Compositional attacks
2. Hardware misconfiguration

Software Developers Perspective Hardware Designers Perspective

e Unambiguous list of requirements e Foundation of a verification process

e Focus on security

8/23

Contributions

A theory of HSE mechanisms to formally specify and
verify them

o SpecCert: Specifying and Verify Hardware-based
Security Enforcement Mechanisms, Formal
Methods 2016

e Proof of correctness of the HSE mechanism
implemented by x86 BIOSes at runtime in Coq

A Compositional Verification Framework

o Modular Verification of Program with Effects and
Effect Handlers in Coq, Formal Methods 2018

e FreeSpec, a general-purpose framework for the
Coq theorem prover

9/23

Agenda

A Theory of HSE Mechanisms

Prerequisite: Hardware Model

Hardware model as a Labeled Transition System

e Set of states
Registers values, RAM content

o Set oflabeled transitions

> Software transitions O ---+O
ISA semantics

» Hardware transitions
Hardware interrupts

Y £ (H, Ly, Ls, T)

10/23

Step 1. Security Policy

Goal: Enforcing a security policy
e Safety and liveness properties
e P C R(X), where R(X) the set of traces of &

11/23

Step 2. HSE Mechanism

e S the set of software components
S = {bios, os, app;, app, }

o T C Sthe subset of trusted software
components which implements the HSE
mechanism

T = {bios} U=3S\T

e context : H — Sto determine which software
component in executed in a given state

context(s) = bios iffthe coreisin SMM

12/23

Step 2. HSE Mechanism

List of requirements
e over states: safe hardware configurations
The SMRAM has to be locked

e over software transitions: safe software
executions
Do not execute code outside of the SMRAM

A = (S, T, context, state_req, trans_req)

12/23

HSE Laws

Attacker Model
We do not make hypotheses about the behavior of
untrusted softwre components
V(h,l) € H X Ls,
context(h) & T = trans_req(h,])

Requirements consistency

Requirements over transitions preserves
requirements over states
V(h,ILW) e T(X),
state_req(h)
A (I € Lg = trans_req(h,1))
= state_req(h')

13/23

Compliant Traces

Atrace p € R(X) complies with A when

e Itsinitial state satisfies the requirements over
states
state_req(init(p))

e Trusted software components satisfy the
requirements over software transitions

V(h,IW') € trans(p),
| € Ls = trans_req(h,)

C(A) is the set of compliant traces

14/23

Step 3. Correctness

Implementing A is a sufficient condition in order to
enforce P
VpeC(A),peP

15/23

Step 3. Correctness

Implementing A is a sufficient condition in order to
enforce P
VpeC(A),peP

Typically, compositional attacks will prevent to
conclude the correctness proof.

15/23

BIOS HSE Mechanism Overview

Requirements over states Requirements over transitions
, o When CPU is in SMM (BIOS)
e PC contains a SMRAM address if in
SMM e Do not modify the SMRR
e SMBASE contains a SMRAM address e Do not jump outside of the SMRAM
e SMRAM contains code owned by the
BIOS

e SMRAMC register has been locked)))
When a CPU in SMM fetches an instruction,

e SMRR registers are correctly configured this instruction is owned by the BIOS

e Cached SMRAM is owned by the BIOS

16/23

SpecCert Implementation

e 2000 lines of definitions, 2 500 lines of proofs
e 150 lemmas and theorems
e Available as a free software (CeCILL-B)

https://github.com/1thms/SpecCert

17/23

https://github.com/lthms/SpecCert

Lessons Learned

Our theory allows for
e Reasoning about hardware/software co-designs

e Without modeling software components

A hardware model remains mandatory
e Practicable
e Reusable

18/23

Agenda

A Compositional Verification Framework

Goal: Compositional Reasoning

Ease the reasoning about component-based systems

Our contributions is twofold

e Modular verification approach for
component-based systems

» Inisolation and in composition
e Animplementation of this approach in Coq

» Components as programs with effects
(implemented using a Free monad)

19/23

Interface Contracts

Given an Interface, we define two classes of requirements
PRECONDITION Which operations can be used at a given time?
PosTCONDITION What guarantee to expect from their result?

PRECONDITION = POSTCONDITION

20/23

Illustration of the Proposed Formalism

CPU

21/23

Illustration of the Proposed Formalism

The CPU executes a Software Component thanks to a
Memory Controller.

,,,,,,,,,,,,,,,,,,,,,,,,,,,

I I |
' Software ﬂ> CPU "~ Memory Controller

CPU
Icp y — Imc

21/23

Illustration of the Proposed Formalism

We want to prove the CPU complies with a couple of
pre and postconditions (P, Q).

,,,,,,,,,,,,,,,,,,,,,,,,,,,

I I |
' Software ﬂ> CPU "~ Memory Controller

CPU
Icp y — Imc
P
Q

21/23

Illustration of the Proposed Formalism

We assume the Software Component will enforce the
precondition P.

— I Ivc | ‘
' Software ———+ CPU ——» Memory Controller |

CPU
Icp y — Imc
P

Q

21/23

Illustration of the Proposed Formalism

We want to verify that, according to the CPU model,
the postcondition @ holds.

— I Iyc (""" e ‘
' Software ———+ CPU ——» Memory Controller |

CPU
Icp y — Imc

21/23

Illustration of the Proposed Formalism

Rather than relying on the Memory Controller
model, we'd rather identify a sufficient couple
(P",Q’), and abstract away the MCH.

— I Ivc | ‘
' Software ——— CPU ——» Memory Controller |

Iy — Ivc
P P
Q Q

21/23

Illustration of the Proposed Formalism

We prove that, because P is assumed and thanks to
the CPU model, then the assumptions P’ are met.

— I Ivc | ‘
' Software ———+ CPU ——» Memory Controller |

Iy — Ivc
P P
Q Q

21/23

Illustration of the Proposed Formalism

We assume the Memory Controller enforces the
postcondition Q.

I f I
' Software ———| CPU —— Memory Controller '

Iy — Ivc
P P
Q Q

21/23

Illustration of the Proposed Formalism

We prove that, because Q" and thanks to CPU model,
then Q' is verified.

I f I
' Software ———| CPU —— Memory Controller '

Iy — Ivc
P P
Q Q

21/23

Illustration of the Proposed Formalism

In other words, our CPU model enforces Q as long as
the Software component complies to P.

I f |
' Software ——— CPU |—— Memory Controller |

Iy — Ivc
P P
Q Q

21/23

Illustration of the Proposed Formalism

We can then have a similar work with the Memory
Controller model. ——----mmmmmmmm-

1==--====7 Icpy Imc

' Software — CPU

A,
=
[¢]
3
o
=

<
Q
o
=)
-
-
o,
)
—

21/23

Illustration of the Proposed Formalism

E DRAM Controller E
jm- - I I
:LVGA Controller E

21/23

Illustration of the Proposed Formalism

DRAM Controller
jm- - I I
:LVGA Controller E

21/23

Illustration of the Proposed Formalism

21/23

Illustration of the Proposed Formalism

DRAM Controller
jm- - I I
:LVGA Controller E

21/23

FreeSpec

A general-purpose framework for implementing
(with a Free monad) and certifying (with interface
contracs) impure computations in Coq.

e A firstiteration of the framework
(“in-the-large”)
e Verification of a simplified Memory Controller

Still an active research project (CPP’20)

https://github.com/ANSSI-FR/coq-prelude
https://github.com/ANSSI-FR/FreeSpec

22/23

https://github.com/ANSSI-FR/coq-prelude
https://github.com/ANSSI-FR/FreeSpec

e SpecCert: Specifying and Verify Hardware-based
Security Enforcement Mechanisms
Thomas Letan, Pierre Chifflier, Guillaume Hiet, Pierre Néron, Benjamin
Morin, Formal Methods 2016

e Modular Verification of Program with Effects and Effect
Handlers in Coq
Thomas Letan, Yann Régis-Gianas, Pierre Chifflier, Guillaume Hiet,
Formal Methods 2018

https://github.com/1thms/SpecCert
https://github.com/ANSSI-FR/FreeSpec

Questions?

23/23

https://github.com/lthms/SpecCert
https://github.com/ANSSI-FR/FreeSpec

	A Theory of HSE Mechanisms
	A Compositional Verification Framework

