
Specifying and Verifying

Hardware-based Security

Enforcement mechanisms

�omas Letan

Laboratoire Sécurité du Logiciel (LSL)

ANSSI

January 30, 2020



Specifying and Verifying

Hardware-based Security

Enforcement mechanisms

�omas Letan

Laboratoire Architectures Matérielles et logicielles (LAM)

ANSSI

January 30, 2020



Security of Low Level Software Components

BIOS

Operating System

App.App. Software components of

• Various origin
• Various quality
• Various level of trust

Each layer has to protect itself against upper
(untrusted) layers

2/23



Security of Low Level Software Components

BIOS

Operating System

App.App. Software components of

• Various origin
• Various quality
• Various level of trust

Each layer has to protect itself against upper
(untrusted) layers

2/23



Hardware-based Security Enforcement Mechanisms

Trusted Software Components

Operating System

configure

sets up

Hardware Components

Page Tables and Rings

to constrain

to constrain

Untrusted Software Components

End-user Applications

wrt.

to remain

Security Policies

Inside a Sandbox

3/23



Hardware-based Security Enforcement Mechanisms

Trusted Software Components Operating System

configure sets up

Hardware Components Page Tables and Rings

to constrain to constrain

Untrusted Software Components End-user Applications

wrt. to remain

Security Policies Inside a Sandbox

3/23



�e BIOS

�e BIOS is provided by the hardware manufacturer

Boot sequence Initialize the hardware platform

Runtime Keep the platform in a working state

From a security perspective

• Shall continue to operate even in presence of a
compromised software stack

• Most privileged software components of the
stack

BIOS is the Root of Trust

4/23



BIOS HSEMechanism

SMM �emost privileged x86 operating mode

SMRAM Dedicated memory region of the DRAM

protected by the Memory Controller

SMI Hardware, non-maskable interrupt

SMRAM : Integrity and Confidentiality

SMI : Availability

5/23



BIOS HSEMechanism

SMM �emost privileged x86 operating mode

SMRAM Dedicated memory region of the DRAM

protected by the Memory Controller

SMI Hardware, non-maskable interrupt

SMRAM : Integrity and Confidentiality

SMI : Availability

5/23



Selection of SMMVulnerabilities

Prior 2008 Incorrect configuration of SMRAMC

2009 SMRAMCache Poisoning Attack

2014 Sinkhole

2015 Speed Racer, SENTER Sandman

Until today Incorrect configuration of BIOS_CNTL

6/23



Selection of SMMVulnerabilities

Prior 2008 Incorrect configuration of SMRAMC

2009 SMRAMCache Poisoning Attack

2014 Sinkhole

2015 Speed Racer, SENTER Sandman

Until today Incorrect configuration of BIOS_CNTL

Compositional Attacks

• Only legitimate (wrt. specifications) use of
hardware features

• Flaws in hardware specifications

6/23



Selection of SMMVulnerabilities

Prior 2008 Incorrect configuration of SMRAMC

2009 SMRAMCache Poisoning Attack

2014 Sinkhole

2015 Speed Racer, SENTER Sandman

Until today Incorrect configuration of BIOS_CNTL

Misconfiguration Vulnerabilities

• Hardware features are available
• But are not correctly used by manufacturers

6/23



Challenges of HSEMechanisms

AHSEmechanism implementation is correct if

• Hardware components expose sound APIs
• Trusted software components correctly use
them

In between several verification domains

• Hardware verification
• Machine code verification
• System software verification

7/23



Goal: Formal Specifications

Formal specification and verification of HSE

mechanisms to address

1. Compositional attacks

2. Hardware misconfiguration

Software Developers Perspective

• Unambiguous list of requirements
• Focus on security

Hardware Designers Perspective

• Foundation of a verification process

8/23



Contributions

A theory of HSEmechanisms to formally specify and

verify them

• SpecCert: Specifying and Verify Hardware-based
Security EnforcementMechanisms, Formal
Methods 2016

• Proof of correctness of the HSEmechanism
implemented by x86 BIOSes at runtime in Coq

A Compositional Verification Framework

• Modular Verification of Programwith Effects and
Effect Handlers in Coq, Formal Methods 2018
• FreeSpec, a general-purpose framework for the
Coq theorem prover

9/23



Agenda

A�eory of HSEMechanisms

A Compositional Verification Framework



Prerequisite: Hardware Model

1

2

3

4

5

6

7

8

9

PP

C(∆)

Hardware model as a Labeled Transition System

• Set of states
Registers values, RAM content

• Set of labeled transitions
I Software transitions

1 2

ISA semantics
I Hardware transitions

4 9

Hardware interrupts

Σ , 〈H, LH, LS, T〉

10/23



Step 1. Security Policy

1

2

3

4

5

6

7

8

9

PP

C(∆)

Goal: Enforcing a security policy

• Safety and liveness properties
• P ⊆ R(Σ), whereR(Σ) the set of traces ofΣ

11/23



Step 2. HSEMechanism

1

2

3

4

5

6

7

8

9

PP

C(∆)

• S the set of software components
S = {bios, os, app

1
, app

2
}

• T ⊆ S the subset of trusted software
componentswhich implements theHSE
mechanism
T = {bios} U = S\T

• context : H→ S to determine which software
component in executed in a given state

context(s) = bios iff the core is in SMM

12/23



Step 2. HSEMechanism

1

2

3

4

5

6

7

8

9

PP

C(∆)

List of requirements

• over states: safe hardware configurations
�eSMRAMhas to be locked

• over software transitions: safe software
executions

Do not execute code outside of the SMRAM

∆ , 〈S, T, context, state_req, trans_req〉

12/23



HSE Laws

1

2

3

4

5

6

7

8

9

PP

C(∆)

Attacker Model

We do not make hypotheses about the behavior of

untrusted softwre components

∀(h, l) ∈ H× LS,
context(h) 6∈ T ⇒ trans_req(h, l)

Requirements consistency

Requirements over transitions preserves

requirements over states

∀(h, l, h′) ∈ T (Σ),
state_req(h)
∧ (l ∈ LS ⇒ trans_req(h, l))
⇒ state_req(h′)

13/23



Compliant Traces

1

2

3

4

5

6

7

8

9

PP

C(∆)

A trace ρ ∈ R(Σ) complies with∆when

• Its initial state satisfies the requirements over
states

state_req(init(ρ))

• Trusted software components satisfy the
requirements over software transitions

∀(h, l, h′) ∈ trans(ρ),
l ∈ LS ⇒ trans_req(h, l)

C(∆) is the set of compliant traces

14/23



Step 3. Correctness

1

2

3

4

5

6

7

8

9

PP

C(∆)

Implementing∆ is a sufficient condition in order to

enforce P
∀ρ ∈ C(∆), ρ ∈ P

15/23



Step 3. Correctness

1

2

3

4

5

6

7

8

9

PP

C(∆)

Implementing∆ is a sufficient condition in order to

enforce P
∀ρ ∈ C(∆), ρ ∈ P

Typically, compositional attacks will prevent to

conclude the correctness proof.

15/23



BIOS HSEMechanism Overview

Requirements over states

• PC contains a SMRAM address if in

SMM

• SMBASE contains a SMRAM address

• SMRAM contains code owned by the

BIOS

• SMRAMC register has been locked

• SMRR registers are correctly configured

• Cached SMRAM is owned by the BIOS

Requirements over transitions

When CPU is in SMM (BIOS)

• Do not modify the SMRR
• Do not jump outside of the SMRAM

Code Injection Policy

When a CPU in SMM fetches an instruction,

this instruction is owned by the BIOS

16/23



SpecCert Implementation

• 2 000 lines of definitions, 2 500 lines of proofs
• 150 lemmas and theorems
• Available as a free software (CeCILL-B)

https://github.com/lthms/SpecCert

17/23

https://github.com/lthms/SpecCert


Lessons Learned

Our theory allows for

• Reasoning about hardware/software co-designs
• Without modeling software components

A hardware model remains mandatory

• Practicable
• Reusable

18/23



Agenda

A�eory of HSEMechanisms

A Compositional Verification Framework



Goal: Compositional Reasoning

Ease the reasoning about component-based systems

Our contributions is twofold

• Modular verification approach for
component-based systems

I In isolation and in composition
• An implementation of this approach in Coq

I Components as programs with effects

(implemented using a Free monad)

19/23



Interface Contracts

Given an Interface, we define two classes of requirements

Precondition Which operations can be used at a given time?

Postcondition What guarantee to expect from their result?

Precondition⇒ Postcondition

20/23



Illustration of the Proposed Formalism

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



Illustration of the Proposed Formalism

�eCPU executes a Software Component thanks to a
Memory Controller.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

21/23



Illustration of the Proposed Formalism

Wewant to prove the CPU complies with a couple of

pre and postconditions (P,Q).

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P

Q

21/23



Illustration of the Proposed Formalism

We assume the Software Component will enforce the

precondition P.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P

Q

21/23



Illustration of the Proposed Formalism

Wewant to verify that, according to the CPUmodel,

the postconditionQ holds.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P
⇓
Q

21/23



Illustration of the Proposed Formalism

Rather than relying on the Memory Controller

model, we’d rather identify a sufficient couple

(P′,Q′), and abstract away the MCH.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P P′

Q Q′

21/23



Illustration of the Proposed Formalism

We prove that, because P is assumed and thanks to
the CPUmodel, then the assumptions P′

are met.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P =⇒ P′

Q Q′

21/23



Illustration of the Proposed Formalism

We assume the Memory Controller enforces the

postconditionQ′
.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P =⇒ P′

⇓
Q Q′

21/23



Illustration of the Proposed Formalism

We prove that, becauseQ′
and thanks to CPUmodel,

thenQ′
is verified.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P =⇒ P′

⇓
Q ⇐= Q′

21/23



Illustration of the Proposed Formalism

In other words, our CPUmodel enforcesQ as long as

the Software component complies to P.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

ICPU
CPU−−→ IMC

P =⇒ P′

⇓ ⇓
Q ⇐= Q′

21/23



Illustration of the Proposed Formalism

We can then have a similar work with the Memory

Controller model.

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



Illustration of the Proposed Formalism

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



Illustration of the Proposed Formalism

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



Illustration of the Proposed Formalism

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



Illustration of the Proposed Formalism

Software CPU Memory Controller

DRAMController

VGA Controller

ICPU IMC

21/23



FreeSpec

A general-purpose framework for implementing

(with a Free monad) and certifying (with interface

contracs) impure computations in Coq.

• A first iteration of the framework
(“in-the-large”)

• Verification of a simplifiedMemory Controller

Still an active research project (CPP’20)

https://github.com/ANSSI-FR/coq-prelude
https://github.com/ANSSI-FR/FreeSpec

22/23

https://github.com/ANSSI-FR/coq-prelude
https://github.com/ANSSI-FR/FreeSpec


• SpecCert: Specifying and Verify Hardware-based
Security Enforcement Mechanisms

�omas Letan, Pierre Chifflier, GuillaumeHiet, Pierre Néron, Benjamin
Morin, Formal Methods 2016

• Modular Verification of Programwith Effects and Effect

Handlers in Coq

�omas Letan, Yann Régis-Gianas, Pierre Chifflier, GuillaumeHiet,
Formal Methods 2018

https://github.com/lthms/SpecCert
https://github.com/ANSSI-FR/FreeSpec

Questions?

23/23

https://github.com/lthms/SpecCert
https://github.com/ANSSI-FR/FreeSpec

	A Theory of HSE Mechanisms
	A Compositional Verification Framework

