

A Cross-Layer Security Approach: Combining

Accurate Modelling of Hardware Faults with Static

Software Analysis

Johan Laurent1, Christophe Deleuze1, Vincent

Beroulle1, Florian Pebay-Peyroula2

1

This work was funded thanks to the French national program 'programme
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05

1 Univ. Grenoble Alpes, Grenoble INP, LCIS
26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

2 Univ. Grenoble Alpes, CEA, LETI
38000 Grenoble, France
firstname.lastname@cea.fr

GT Méthodes Formelles pour la Sécurité
January 30th 2020

Hardware Fault Attacks

2

 Fault injection attacks: perturbing a circuit
• Power/clock glitches, heating, EM injection, laser…

 Attacker’s goals :
• Bypass security measures

 (authentication with a wrong PIN code)

• Extract secret information from fault effects.

 How to protect ?
• Hardware countermeasures (CM): duplication, error

correcting codes, watchdog…

• Software CM: duplication, control flow integrity…

Summary

 I. Introduction

 II. Our approach

– Overview

– Software fault injection

 III. Case study

 IV. Discussion

– Invariant properties

– Performances

– False positives

 V. Conclusion & perspectives

3

I. Introduction

4

 Software analyses are based on software fault models (defined by

the Joint Interpretation Library for example [1])

– Instruction skip [2]

– Control-flow corruption (test inversion, …) [3][4]

– Register/memory corruptions [5][6]

 Problem: there are hardware fault effects that are not modelled in

typical software fault models [7]

 Effects obtained in simulation in a LowRISC v0.2 processor [8]:

– Replace an argument by the last computed value

– Make an instruction “transient”

– Set an architectural register to 0 or 1 during a branching instruction

– Commit a speculated instruction

– …

I. Introduction

5

 How to model these effects ?

 How to perform efficient security analyses with these

complex software fault models?

II. Approach

a. Overview

6

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

7

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

II. Approach

a. Overview – Fault Modelling

8

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

II. Approach

a. Overview – Security analysis

 Constraints:

– Models very different from one another

– Need to model certain structures of the processor

– Need to allow static analyses

9

Fault Model
(XML)

Executable file

(binary)

Instrumentation tool

Meta-mutant
(instrumented C

code)

II. Approach

b. Software Fault Injection

II. Approach

10

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10],

with the following countermeasures:
– Hardened Booleans (0x55 for false and 0xAA for true)

– Verification of the loop counter at the end of the loop

– Duplicated Boolean tests.

11

III. Case study

 diff=FALSE; status=FALSE;

 for(i=0 ; i<4 ; i++){

 if(userPIN[i] != secretPIN[i]) diff=TRUE;

 }

 if(i != 4) countermeasure();

if(diff==FALSE){

 if(FALSE==diff) status=TRUE;

 else countermeasure();

 } else status=FALSE;

return status;

III. Case study

12

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate model
?

11 MSB of a previous value

62-bit 2-bit

Argument to the ALU

64-bit

Software Fault Model obtained through RTL simulation:

III. Case study

13

 Frama-C Value analysis is based on abstract interpretation

 Abstract interpretation [9] is used to abstract the semantics of an

application. More precisely, it computes results on intervals instead

of concrete values
– Instead of analyzing the program with individual values, we can analyze “simultaneously”

many values.

 It computes an over-approximation of the results (sound and

incomplete)

 int a = {0..9}

 a++; // a = {1..10}

 int a = {0..9}

 a++; // a = {1..10}

 a = pow(a,2); // a = {1..100}

 Security property to check:

 For any user PIN different from the secret PIN, do not authenticate

 The user and secret PINs are abstracted.

14

III. Case study

15

 There are 50 injection times possible:

– For 45, Frama-C proves that the property is secure against all user inputs

– The other 5 (which point to the same instruction) are potentially vulnerabilities

 A manual analysis showed that: if the first digit of the secret

PIN has a value 0, 1, 2 or 3, the fault can reduce the program

to two loop iterations instead of four

 The countermeasures are not effective in this case (in particular the one that

checks the loop counter)

 40% of the possible secret PIN are vulnerable

 How easy would it be to find the vulnerability with classical

tools (with concrete values) ?

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop

iterations succeed (1%) overall, only 0.4% to find the vulnerability with

concrete values for a given injection.

III. Case study

 The attack was simulated at RTL

 This case study shows that:

– Complex fault models lead to undetected successful attacks

 Justifies the use of the instrumentation tool

– Some attacks only happen under specific circumstances,

difficult to find using random, concrete data

 Justifies the use of static analysis

16

III. Case study

 The properties have to be invariant relative to the abstracted states

 Example

– First idea: set all digits to {0..9} (secret: XXXX ; user: XXXX)

 with the property : “if the PIN are different, do not authenticate”

– Problem: Value analysis does not keep track of relations between variables

– Solution: manually set a secret digit to a concrete value, and the

corresponding user digit to everything except that value

 (secret: 0XXX ; user: ≠XXX)

 with the property: “do not authenticate”

17

IV. Discussion

a. Invariant properties

 How efficient is the method to analyze a program, compared

to testing every value individually ?

– With the property: authentication ? 2.5x

– With the property: loop count = 4 ? 10x

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx

 While very random, performances are better than simple

executions of the program

18

IV. Discussion

b. Performances

 Value analysis computes an over-approximation of the states

 false alarms

– No counter-examples

– Need further analysis (with other tools or manually)

 False alarms mean that the property could not be proved, but

do not mean that it is not valid

19

IV. Discussion

c. False positives

V. Conclusion

 Our tool generates a C code that embeds complex

software fault models

 Frama-C Value analysis can then be used to verify

that security properties hold for any user inputs.

20

V. Perspectives

 Other types of analysis ? Other tools ?

 Multiple injections ?

 Structure of the mutant has been designed to play

nicely with Frama-C Value analysis, but needs to de

adapted for other forms of analyses.

21

Thanks for your attention !

Questions ?

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure

against instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the

Robustness of Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh

International Conference on Software Testing, 2014, pp. 213–222.

[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for

Control Flow Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA

algorithm,” presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28–48.

[6] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level

Analysis of Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System

Design, 2015, pp. 530–533.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection

techniques for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),

2013, pp. 1–10.

[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “On the importance of

Analysing Microarchitecture for Accurate Software Fault Models,” in 2018 21st Euromicro Conference on Digital

System Design (DSD), 2018, pp. 561–564.

[9] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, New York, NY, USA, 1977, pp. 238–252.

[10] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and

Simulation Secure Collection,” 2016, pp. 3–11.

V. Perspectives

 Example:
– In the mutant, should we represent memory as an array for 64-bit

data, or 8-bit ? (in any case, loading and storing instructions is made

so that every byte is accessible).

– Both work for a simple execution of the code

24

Initially Mem[0]=0x00000000 Mem[0]=0x00

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00

Store {0..FF} at address 0 Mem[0]=

 min: 0x00000000

 max: 0x000000FF

Mem[0]=0x00 – 0xFF

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00

Store {0..FF} at address 3 Mem[0]=

 min: 0x00000000

 max: 0xFF0000FF

Mem[0]=0x00 – 0xFF

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00 – 0xFF

25

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Approach

b. Software Fault Injection

26

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 reg[15]=res; // Write-Back

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

1

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Approach

b. Software Fault Injection

27

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

2 l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

II. Approach

b. Software Fault Injection

28

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 if(injection_time==count) arg1=fwd2;

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

3

II. Approach

b. Software Fault Injection

