

A Cross-Layer Security Approach: Combining

Accurate Modelling of Hardware Faults with Static

Software Analysis

Johan Laurent1, Christophe Deleuze1, Vincent

Beroulle1, Florian Pebay-Peyroula2

1

This work was funded thanks to the French national program 'programme
d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05

1 Univ. Grenoble Alpes, Grenoble INP, LCIS
26000 Valence, France
firstname.lastname@lcis.grenoble-inp.fr

2 Univ. Grenoble Alpes, CEA, LETI
38000 Grenoble, France
firstname.lastname@cea.fr

GT Méthodes Formelles pour la Sécurité
January 30th 2020

Hardware Fault Attacks

2

 Fault injection attacks: perturbing a circuit
• Power/clock glitches, heating, EM injection, laser…

 Attacker’s goals :
• Bypass security measures

 (authentication with a wrong PIN code)

• Extract secret information from fault effects.

 How to protect ?
• Hardware countermeasures (CM): duplication, error

correcting codes, watchdog…

• Software CM: duplication, control flow integrity…

Summary

 I. Introduction

 II. Our approach

– Overview

– Software fault injection

 III. Case study

 IV. Discussion

– Invariant properties

– Performances

– False positives

 V. Conclusion & perspectives

3

I. Introduction

4

 Software analyses are based on software fault models (defined by

the Joint Interpretation Library for example [1])

– Instruction skip [2]

– Control-flow corruption (test inversion, …) [3][4]

– Register/memory corruptions [5][6]

 Problem: there are hardware fault effects that are not modelled in

typical software fault models [7]

 Effects obtained in simulation in a LowRISC v0.2 processor [8]:

– Replace an argument by the last computed value

– Make an instruction “transient”

– Set an architectural register to 0 or 1 during a branching instruction

– Commit a speculated instruction

– …

I. Introduction

5

 How to model these effects ?

 How to perform efficient security analyses with these

complex software fault models?

II. Approach

a. Overview

6

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

7

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

II. Approach

a. Overview – Fault Modelling

8

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

II. Approach

a. Overview – Security analysis

 Constraints:

– Models very different from one another

– Need to model certain structures of the processor

– Need to allow static analyses

9

Fault Model
(XML)

Executable file

(binary)

Instrumentation tool

Meta-mutant
(instrumented C

code)

II. Approach

b. Software Fault Injection

II. Approach

10

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate
model ?

 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10],

with the following countermeasures:
– Hardened Booleans (0x55 for false and 0xAA for true)

– Verification of the loop counter at the end of the loop

– Duplicated Boolean tests.

11

III. Case study

 diff=FALSE; status=FALSE;

 for(i=0 ; i<4 ; i++){

 if(userPIN[i] != secretPIN[i]) diff=TRUE;

 }

 if(i != 4) countermeasure();

if(diff==FALSE){

 if(FALSE==diff) status=TRUE;

 else countermeasure();

 } else status=FALSE;

return status;

III. Case study

12

RTL fault
injection

Software fault injection

Software
fault

model
Test programs

Program to
analyze

?=

Valid security
property ?

Static
analysis

Accurate model
?

11 MSB of a previous value

62-bit 2-bit

Argument to the ALU

64-bit

Software Fault Model obtained through RTL simulation:

III. Case study

13

 Frama-C Value analysis is based on abstract interpretation

 Abstract interpretation [9] is used to abstract the semantics of an

application. More precisely, it computes results on intervals instead

of concrete values
– Instead of analyzing the program with individual values, we can analyze “simultaneously”

many values.

 It computes an over-approximation of the results (sound and

incomplete)

 int a = {0..9}

 a++; // a = {1..10}

 int a = {0..9}

 a++; // a = {1..10}

 a = pow(a,2); // a = {1..100}

 Security property to check:

 For any user PIN different from the secret PIN, do not authenticate

 The user and secret PINs are abstracted.

14

III. Case study

15

 There are 50 injection times possible:

– For 45, Frama-C proves that the property is secure against all user inputs

– The other 5 (which point to the same instruction) are potentially vulnerabilities

 A manual analysis showed that: if the first digit of the secret

PIN has a value 0, 1, 2 or 3, the fault can reduce the program

to two loop iterations instead of four

 The countermeasures are not effective in this case (in particular the one that

checks the loop counter)

 40% of the possible secret PIN are vulnerable

 How easy would it be to find the vulnerability with classical

tools (with concrete values) ?

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop

iterations succeed (1%)  overall, only 0.4% to find the vulnerability with

concrete values for a given injection.

III. Case study

 The attack was simulated at RTL

 This case study shows that:

– Complex fault models lead to undetected successful attacks

  Justifies the use of the instrumentation tool

– Some attacks only happen under specific circumstances,

difficult to find using random, concrete data

  Justifies the use of static analysis

16

III. Case study

 The properties have to be invariant relative to the abstracted states

 Example

– First idea: set all digits to {0..9} (secret: XXXX ; user: XXXX)

 with the property : “if the PIN are different, do not authenticate”

– Problem: Value analysis does not keep track of relations between variables

– Solution: manually set a secret digit to a concrete value, and the

corresponding user digit to everything except that value

 (secret: 0XXX ; user: ≠XXX)

 with the property: “do not authenticate”

17

IV. Discussion

a. Invariant properties

 How efficient is the method to analyze a program, compared

to testing every value individually ?

– With the property: authentication ? 2.5x

– With the property: loop count = 4 ? 10x

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx

 While very random, performances are better than simple

executions of the program

18

IV. Discussion

b. Performances

 Value analysis computes an over-approximation of the states

 false alarms

– No counter-examples

– Need further analysis (with other tools or manually)

 False alarms mean that the property could not be proved, but

do not mean that it is not valid

19

IV. Discussion

c. False positives

V. Conclusion

 Our tool generates a C code that embeds complex

software fault models

 Frama-C Value analysis can then be used to verify

that security properties hold for any user inputs.

20

V. Perspectives

 Other types of analysis ? Other tools ?

 Multiple injections ?

 Structure of the mutant has been designed to play

nicely with Frama-C Value analysis, but needs to de

adapted for other forms of analyses.

21

Thanks for your attention !

Questions ?

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure

against instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the

Robustness of Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh

International Conference on Software Testing, 2014, pp. 213–222.

[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for

Control Flow Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178–1192, Dec. 2017.

[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA

algorithm,” presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28–48.

[6] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level

Analysis of Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System

Design, 2015, pp. 530–533.

[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection

techniques for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),

2013, pp. 1–10.

[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “On the importance of

Analysing Microarchitecture for Accurate Software Fault Models,” in 2018 21st Euromicro Conference on Digital

System Design (DSD), 2018, pp. 561–564.

[9] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, New York, NY, USA, 1977, pp. 238–252.

[10] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and

Simulation Secure Collection,” 2016, pp. 3–11.

V. Perspectives

 Example:
– In the mutant, should we represent memory as an array for 64-bit

data, or 8-bit ? (in any case, loading and storing instructions is made

so that every byte is accessible).

– Both work for a simple execution of the code

24

Initially Mem[0]=0x00000000 Mem[0]=0x00

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00

Store {0..FF} at address 0 Mem[0]=

 min: 0x00000000

 max: 0x000000FF

Mem[0]=0x00 – 0xFF

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00

Store {0..FF} at address 3 Mem[0]=

 min: 0x00000000

 max: 0xFF0000FF

Mem[0]=0x00 – 0xFF

Mem[1]=0x00

Mem[2]=0x00

Mem[3]=0x00 – 0xFF

25

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Approach

b. Software Fault Injection

26

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 reg[15]=res; // Write-Back

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

1

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

II. Approach

b. Software Fault Injection

27

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

2 l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

II. Approach

b. Software Fault Injection

28

<model name=”FFM”>

 <globals> long fwd1 = 0, fwd2 = 0; </globals>

 <gold_end> fwd2 = fwd1; fwd1 = res; </gold_end>

 <fault_ini> if(injection_time==count) arg1=fwd2; </fault_ini>

</model>

l06ac: // ADDI x15, x0, 85

 arg1 = reg[0]; arg2 = 85; // Decode

 if(injection_time==count) arg1=fwd2;

 res = arg1 + arg2; // Execute

 fwd2=fwd1; fwd1=res;

 reg[15]=res; // Write-Back

[…]

 0x06ac: ADDI x15 = x0 + 85

[…]

Instrumentation tool

3

II. Approach

b. Software Fault Injection

