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Hardware Fault Attacks 
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 Fault injection attacks: perturbing a circuit 
• Power/clock glitches, heating, EM injection, laser… 

 Attacker’s goals : 
• Bypass security measures  

        (authentication with a wrong PIN code) 

• Extract secret information from fault effects. 

 How to protect ? 
• Hardware countermeasures (CM): duplication, error 

correcting codes, watchdog… 

• Software CM: duplication, control flow integrity… 
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I. Introduction 
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 Software analyses are based on software fault models (defined by 

the Joint Interpretation Library for example [1])  

– Instruction skip [2] 

– Control-flow corruption (test inversion, …) [3][4] 

– Register/memory corruptions [5][6] 

 

 Problem: there are hardware fault effects that are not modelled in 

typical software fault models [7] 

 

 Effects obtained in simulation in a LowRISC v0.2 processor [8]: 

– Replace an argument by the last computed value  

– Make an instruction “transient” 

– Set an architectural register to 0 or 1 during a branching instruction 

– Commit a speculated instruction 

– … 
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 How to model these effects ? 

 

 How to perform efficient security analyses with these 

complex software fault models? 



 
   

II. Approach 

a. Overview 
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 Constraints:  

– Models very different from one another 

– Need to model certain structures of the processor 

– Need to allow static analyses 
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 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10], 

with the following countermeasures:  
– Hardened Booleans (0x55 for false and 0xAA for true)  

– Verification of the loop counter at the end of the loop  

– Duplicated Boolean tests.  
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III. Case study 

  diff=FALSE; status=FALSE; 

  for(i=0 ; i<4 ; i++){ 

      if(userPIN[i] != secretPIN[i])  diff=TRUE; 

  } 

  if(i != 4) countermeasure(); 

   

if(diff==FALSE){  

        if(FALSE==diff)  status=TRUE; 

        else countermeasure(); 

 } else status=FALSE; 

 
return status; 



 
   

III. Case study 

12 

RTL fault 
injection 

Software fault injection 

Software 
fault 

model 
Test programs 

Program to 
analyze 

?= 

Valid security 
property ? 

Static 
analysis 

Accurate model 
? 

11 MSB of a previous value 

62-bit 2-bit 

Argument to the ALU 

64-bit 

Software Fault Model obtained through RTL simulation:  



 
   

III. Case study 
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 Frama-C Value analysis is based on abstract interpretation  

 Abstract interpretation [9] is used to abstract the semantics of an 

application. More precisely, it computes results on intervals instead 

of concrete values 
– Instead of analyzing the program with individual values, we can analyze “simultaneously”  

many values. 

  

 

 

 It computes an over-approximation of the results (sound and 

incomplete)  

 

 

  int a = {0..9} 

  a++;                     // a = {1..10} 

  int a = {0..9} 

  a++;                     // a = {1..10} 

  a = pow(a,2);     // a = {1..100}  

 



 
   

 

 Security property to check:  

 For any user PIN different from the secret PIN, do not authenticate 

 

 The user and secret PINs are abstracted. 

14 

III. Case study 
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 There are 50 injection times possible:  

– For 45, Frama-C proves  that the property is secure against all user inputs  

– The other 5 (which point to the same instruction) are potentially vulnerabilities 

 

 A manual analysis showed that: if the first digit of the secret 

PIN has a value 0, 1, 2 or 3, the fault can reduce the program 

to two loop iterations instead of four 

 The countermeasures are not effective in this case (in particular the one that 

checks the loop counter) 

 40% of the possible secret PIN are vulnerable  

 

 How easy would it be to find the vulnerability with classical 

tools (with concrete values) ? 

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop 

iterations succeed (1%)  overall, only 0.4% to find the vulnerability with 

concrete values for a given injection. 

 

III. Case study 



 
   

 The attack was simulated at RTL 

 

 This case study shows that:  

– Complex fault models lead to undetected successful attacks   

  Justifies the use of the instrumentation tool 

 

– Some attacks only happen under specific circumstances, 

difficult to find using random, concrete data   

  Justifies the use of static analysis 
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III. Case study 



 
   

 

 The properties have to be invariant relative to the abstracted states 

 

 Example 

– First idea: set all digits to {0..9}    (secret: XXXX ; user: XXXX)       

 with the property : “if the PIN are different, do not authenticate” 

– Problem: Value analysis does not keep track of relations between variables 

– Solution: manually set a secret digit to a concrete value, and the 

corresponding user digit to everything except that value  

 (secret: 0XXX ; user: ≠XXX) 

 with the property: “do not authenticate” 
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IV. Discussion 

a.  Invariant properties 



 
   

 

 How efficient is the method to analyze a program, compared 

to testing every value individually ?  

– With the property: authentication ?   2.5x 

– With the property: loop count = 4 ?    10x 

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx 

 

 While very random, performances are better than simple 

executions of the program 
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IV. Discussion 

b.  Performances 



 
   

 

 Value analysis computes an over-approximation of the states 

 false alarms 

– No counter-examples 

– Need further analysis (with other tools or manually) 

 

 False alarms mean that the property could not be proved, but 

do not mean that it is not valid 

 

19 

IV. Discussion 

c.  False positives 



 
   

V. Conclusion 

 

 Our tool generates a C code that embeds complex 

software fault models 

 

 Frama-C Value analysis can then be used to verify 

that security properties hold for any user inputs. 
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V. Perspectives 

 

 Other types of analysis ? Other tools ? 

 

 Multiple injections ? 

 

 Structure of the mutant has been designed to play 

nicely with Frama-C Value analysis, but needs to de 

adapted for other forms of analyses. 
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Thanks for your attention ! 

 

Questions ? 
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V. Perspectives 

 Example:  
– In the mutant, should we represent memory as an array for 64-bit 

data, or 8-bit ? (in any case, loading and storing instructions is made 

so that every byte is accessible). 

– Both work for a simple execution of the code 
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Initially Mem[0]=0x00000000 Mem[0]=0x00 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 

Store {0..FF} at address 0 Mem[0]=  

    min:  0x00000000 

    max: 0x000000FF 

 

Mem[0]=0x00 – 0xFF 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 

Store {0..FF} at address 3 Mem[0]= 

    min:  0x00000000 

    max: 0xFF0000FF 

 

Mem[0]=0x00 – 0xFF 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 – 0xFF 
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[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 

Instrumentation tool 

<model name=”FFM”> 

      <globals>       long fwd1 = 0,   fwd2 = 0;      </globals> 

      <gold_end>     fwd2 = fwd1;    fwd1 = res;      </gold_end> 

      <fault_ini>   if(injection_time==count) arg1=fwd2;  </fault_ini> 

</model> 

II. Approach 

b. Software Fault Injection 
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l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

 

  res = arg1 + arg2;     // Execute 

 

  reg[15]=res;  // Write-Back 

[…] 
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