GT Méthodes Formelles pour la Sécurité
January 30t 2020

A Cross-Layer Security Approach: Combining
Accurate Modelling of Hardware Faults with Static
Software Analysis

Johan Laurent?, Christophe Deleuzel, Vincent
Beroulle!, Florian Pebay-Peyroula?

1 Univ. Grenoble Alpes, Grenoble INP, LCIS 2 Univ. Grenoble Alpes, CEA, LETI
26000 Valence, France 38000 Grenoble, France
firstname.lasthame@Icis.grenoble-inp.fr firstname.lasthname@cea.fr
" UGN'VER%ITE This work was funded thanks to the French national program 'programme Grenobl e)l NP ‘
";:, A{sgg 2 d’Investissements d’Avenir, IRT Nanoelec' ANR-10-AIRT-05 ‘

/' .

Hardware Fault Attacks

» Fault injection attacks: perturbing a circuit
« Power/clock glitches, heating, EM Injection, laser...

= Attacker’s goals :

« Bypass security measures
(authentication with a wrong PIN code)
o Extract secret information from fault effects. 111kl

= How to protect ?

« Hardware countermeasures (CM): duplication, error
correcting codes, watchdog...

« Software CM: duplication, control flow integrity...

P 1
“UGNIVERSbI'II'E GronoblelNP‘
v Grenoble]

2 Alpes

Summary

= |. Introduction

= |I. Our approach
— Overview
— Software fault injection

= [ll. Case study

V. Discussion
— Invariant properties
— Performances
— False positives

V. Conclusion & perspectives

, 1|
.UNIVERSITE Grenoble INP‘
¥ Grenoble
3

2 Alpes /4

l. Introduction

= Software analyses are based on software fault models (defined by
the Joint Interpretation Library for example [1])
— Instruction skip [2]
— Control-flow corruption (test inversion, ...) [3][4]
— Register/memory corruptions [5][6]

= Problem: there are hardware fault effects that are not modelled in
typical software fault models [7]

» Effects obtained in simulation in a LowRISC v0.2 processor [8]:
— Replace an argument by the last computed value
— Make an instruction “transient”
— Set an architectural register to 0 or 1 during a branching instruction

— Commit a speculated instruction
= UNIVERSITE Grenoble INlP‘
& Grenoble]
& Alpes /4 A

l. Introduction

= How to model these effects ?

= How to perform efficient security analyses with these
complex software fault models?

; g
_ UNIVERSITE Grenoble INP‘
' Grenoble ,
4 Alpes /4

Il. Approach

a. Overview

Software
Program to
Test programs fault
analyze
model
\\4 \\4
RTL fault ..
. .. Software fault injection
injection

Accurate Valid security

UNIVERSITE model ? property ? . " :(‘ENI ‘
) ble reno e
¢ Greno / |
6

(3

2 Alpes

Il. Approach

a. Overview - Fault Modelling

Software
Test programs fault
model

RTL fault

. .. Software fault injection
injection

Accurate
. model ? 11
!UNIVERSITE Grenoble)lNP‘

'~ Grenoble /!
2 Alpes / .

Il. Approach

a. Overview - Security analysis

SR Program to
I ar?al ze
model v

4 Vv

Software fault injection

Valid security %%
UINIVERSITE property? Grenoble INlP ‘
' Grenoble]
74l
4 Alpes / o

UNIVERSITE
'~ Grenoble
4 Alpes

Il. Approach

b. Software Fault Injection

Fault Model Executable file
(XML) (binary)

Instrumentation tool

Meta-mutant
(instrumented C
code)

Constraints:
— Models very different from one another
— Need to model certain structures of the processor
— Need to allow static analyses . re"°b‘e)”‘;")‘

/A

UNIVERSITE
' Grenoble
o Alpes

Il. Approach

Test programs

Software
fault
model

RTL fault
injection

Program to
analyze

\

Software fault injection

Accurate
model ?

Valid security
property ?

Y
i)
Grenoble)INIP;

/

il

10

1. Case study

= VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10],
with the following countermeasures:
— Hardened Booleans (0x55 for false and OxAA for true)
— Verification of the loop counter at the end of the loop
— Duplicated Boolean tests.

diff=FALSE; status=FALSE;
for(i=0; i<4 ; i++){

if(userPINJi] = secretPINJ[i]) diff=TRUE;
}

if(i '= 4) countermeasure();

if(diff==FALSE){
If(FALSE==diff) status=TRUE;
else countermeasure();

} else status=FALSE;

, A
. UNIVERSITE GrenoblefINP ‘
% Grenoble return status;

1. Case study

Software
Test programs fault
model
y v v
RTL fault C
c ... Software fault injection
injection

Accurate model
?

Software Fault Model obtained through RTL simulation:

Argument to the ALU MSB of a previous value 11
\ Y / ‘ Y N —
UNIVERSITE 64-bit 62-bit 2-bit .olule fN‘P;‘
' Grenoble

g1,

o Alpes

1. Case study

» Frama-C Value analysis is based on abstract interpretation

= Abstract interpretation [9] is used to abstract the semantics of an
application. More precisely, it computes results on intervals instead
of concrete values

— Instead of analyzing the program with individual values, we can analyze “simultaneously”
many values.

int a ={0..9}
a++;

// a={1..10}

= |t computes an over-approximation of the results (sound and

incomplete)
int a = {0..9}
a++; // a={1..10}
a=pow(a,2); //a={1..100}

UNIVERSITE
< Grenoble

(3

2 Alpes

Grenoble)

1. Case study

= Security property to check:
For any user PIN different from the secret PIN, do not authenticate

= The user and secret PINs are abstracted.

i
UNIVERSITE 5 . |N‘Prﬂ‘
)% Grenoble enens L ’

% Alpes YA

1. Case study

» There are 50 injection times possible:

— For 45, Frama-C proves that the property is secure against all user inputs
— The other 5 (which point to the same instruction) are potentially vulnerabilities

= A manual analysis showed that: if the first digit of the secret
PIN has avalue 0, 1, 2 or 3, the fault can reduce the program
to two loop iterations instead of four

- The countermeasures are not effective in this case (in particular the one that
checks the loop counter)

- 40% of the possible secret PIN are vulnerable

= How easy would it be to find the vulnerability with classical
tools (with concrete values) ?

— The attack is successful if the first secret digit is 0-3 (40%) AND two loop
! UNIVERSITE iterations succeed (1%) =>» overall, only 0.4% to find the vulnerability with) 1))

% Grenoble concrete values for a given injection. Grenoble]INP

/A

2 Alpes

1. Case study

= The attack was simulated at RTL

* This case study shows that:
— Complex fault models lead to undetected successful attacks
=» Justifies the use of the instrumentation tool

— Some attacks only happen under specific circumstances,
difficult to find using random, concrete data

=>» Justifies the use of static analysis

5 W l‘v‘s;
\ UNIVERSinrE Grenoble INP.‘
¢ Grenoble I

4 Alpes /'

1V. Discussion

a. Invariant properties

= The properties have to be invariant relative to the abstracted states

= Example

— First idea: set all digits to {0..9} (secret: XXXX ; user: XXXX)
with the property : “if the PIN are different, do not authenticate”

— Problem: Value analysis does not keep track of relations between variables

— Solution: manually set a secret digit to a concrete value, and the
corresponding user digit to everything except that value
(secret: OXXX ; user: #XXX)

with the property: “do not authenticate”

: 1
-UNIVERSbI.IrE Grenoble |NP‘

' Grenoble]
17

4 Alpes /4

1V. Discussion

b. Performances

= How efficient is the method to analyze a program, compared
to testing every value individually ?

— With the property: authentication ? 2.5x
— With the property: loop count =4 ? 10x
— With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx

= While very random, performances are better than simple
executions of the program

: 1|
-UNIVERSI;.II-E Grenoble INP‘
' Grenoble]
18

4 Alpes /4

1V. Discussion

c. False positives

» Value analysis computes an over-approximation of the states
- false alarms

— No counter-examples
— Need further analysis (with other tools or manually)

» False alarms mean that the property could not be proved, but
do not mean that it is not valid

. 1|
. UNIVERSITE GrenoblefINP ‘
¥ Grenoble ‘
2 Alpes

/'

V. Conclusion

= QOur tool generates a C code that embeds complex
software fault models

» Frama-C Value analysis can then be used to verify
that security properties hold for any user inputs.

, A
. UNIVERSITE GrenoblefINP ‘
¥ Grenoble
2 Alpes /

V. Perspectives

= Other types of analysis ? Other tools ?
= Multiple injections ?

= Structure of the mutant has been designed to play
nicely with Frama-C Value analysis, but needs to de
adapted for other forms of analyses.

< 1
& UGNIVERSITE GrenoblefjINP ‘
< Grenoble

4 Alpes /4 ot

Thanks for your attention!

Questions ?

UNIVERSITE Grenoble
' Grenoble

2 Alpes

<2 LCIS

UNIVERSITE
¥ Grenoble

(3

2 Alpes

References

[1] Joint Interpretation Library, “Application of Attack Potential to Smartcards.” Jan-2013.

[2] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal verification of a software countermeasure
against instruction skip attacks,” presented at the PROOFS 2013, 2013.

[3] M. L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A Symbolic Approach for Evaluation the
Robustness of Secured Codes against Control Flow Injections,” in Verification and Validation 2014 IEEE Seventh
International Conference on Software Testing, 2014, pp. 213-222.
[4] J. Vankeirsbilck, N. Penneman, H. Hallez, and J. Boydens, “Random Additive Signature Monitoring for
Control Flow Error Detection,” IEEE Trans. Reliab., vol. 66, no. 4, pp. 1178-1192, Dec. 2017.
[5] M. Christofi, B. Chetali, L. Goubin, and D. Vigilant, “Formal verification of an implementation of CRT-RSA
algorithm,” presented at the Security Proofs for Embedded Systems (PROOFS), 2012, pp. 28-48.
[6] A.Hdller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “QEMUBased Fault Injection for a System-Level
Analysis of Software Countermeasures Against Fault Attacks,” in 2015 Euromicro Conference on Digital System
Design, 2015, pp. 530-533.
[7] H. Cho, S. Mirkhani, C. Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative evaluation of soft error injection
techniques for robust system design,” in 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC),
2013, pp. 1-10.
[8] J. Laurent, V. Beroulle, C. Deleuze, F. Pebay-Peyroula, and A. Papadimitriou, “On the importance of
Analysing Microarchitecture for Accurate Software Fault Models,” in 2018 21st Euromicro Conference on Digital
System Design (DSD), 2018, pp. 561-564.
[9] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, NY, USA, 1977, pp. 238-252.
[10] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and P. de Choudens, “FISSC: A Fault Injection and
Simulation Secure Collection,” 2016, pp. 3—11.

1

Gronoble)lNP ‘

iy

V. Perspectives

= Example:

— In the mutant, should we represent memory as an array for 64-bit
data, or 8-bit ? (in any case, loading and storing instructions is made
so that every byte is accessible).

— Both work for a simple execution of the code

Initially Mem[0]=0x00000000 | Mem[0]=0x00
Mem|[1]=0x00

Mem|[2]=0x00
Mem[3]=0x00

Store {0..FF} at address 0 Mem|[0]= Mem[0]=0x00 — OxFF
min: 0x00000000 Mem[1]=0x00
max: 0xO00000FF Mem[2]=0x00
Mem[3]=0x00

Store {0..FF} at address 3 Mem][0]= Mem[0]=0x00 — OxFF
min: 0x00000000 Mem][1]=0x00 -
UNIVERSIT max: OxXFFOO00FF Mem([2]=0x00 ble)mlp |
st Grenobl Mem[3]=0x00 — OxFF ‘
4 Alpes /4 o4

Il. Approach

b. Software Fault Injection

<model name="FFM”’>
<globals> long fwd1 =0, fwd2=0; </globals>

<gold_end> fwd2=1fwdl;, fwdl=res; </gold_end> [...]
<fault_ini> if(injection_time==count) argl=fwd2; </fault_ini> Ox06ac: ADDI x15=x0 + 85
</model> [...]

Instrumentation tool

UNIVERSITE)\ 1

G bleJINP ‘
% Grenoble enens)

: /A

2 Alpes

Il. Approach

b. Software Fault Injection

<model name="FFM”’>
<globals>
<gold_end>

long fwd1 =0, fwd2=0;

</globals>

fwd2 =fwdl; fwdl=res; </gold_end> | | T D

<fault_ini> if(injection_time==count) argl=fwd2; </fault_ini> Ox06ac: ADD| x15 = x0 +§‘5_:_':;;
</model> g

Instrumentation tool

I06ac: // ADDI x15,x0,85 | . ;
argl =reg[0]; arg2 = 85; // Decode T
res =argl + argz; /[Execute D I \
' UNIVERSITE U Grenoble)INlP)‘
st Grenoble reg[15]=res; /Il Write-Back
& Alpes

/A

Il. Approach

b. Software Fault Injection

<model name="FFM”’>

.....................

............
.

<gold_end=_ fwd2=fwdl; fwdl=res; ’i</gold_end> [...]
<fault_ini> if(injection time==¢oiint) argl=fwd2; </fault_ini> 0x06ac: ADDI x15 = X0 + 85
</model> [...]

Instrumentation tool

e I06ac: // ADDI x15, x0, 85
argl =reg[0]; arg2 = 85; /l Decode
................... res =argl + arg2; Il Execute X
UNIVERSITE = » fwd2=fwd1l; fwdl=res; Grenob‘e)'Nl")‘
st Grenoble reg[15]=res; /I Write-Back]
4 Alpes .

Il. Approach

b. Software Fault Injection

<model name="FFM”’>
<globals> long fwd1 =0, fwd2=0; </globals>

<gold_end> fwd2 = fwdlifwdi-=res;....s/gold_end> [...]
<fault_ini> 'I.'i't(_i_nj_g_(_:__t_ion_time==count) arg 1=]‘__/_\(_(_:i__2_;__.f<"i’fault_ini> Ox06ac: ADDI x15=x0 + 85
imodels T]

Instrumentation tool

. [06ac: // ADDI x15, x0, 85
.............. argl = reg[0]; arg2 = 85; // Decode
"""""" » if(injection_time==count) argl=fwd2;
res = argl + arg2; Il Execute X
UNIVERSITE fwd2=fwd1l; fwdl=res; Grenoble)INlP)‘
% Grenoble reg[15]=res; Il Write-Back]
& Alpes / 28

