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Hardware Fault Attacks 
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 Fault injection attacks: perturbing a circuit 
• Power/clock glitches, heating, EM injection, laser… 

 Attacker’s goals : 
• Bypass security measures  

        (authentication with a wrong PIN code) 

• Extract secret information from fault effects. 

 How to protect ? 
• Hardware countermeasures (CM): duplication, error 

correcting codes, watchdog… 

• Software CM: duplication, control flow integrity… 
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I. Introduction 
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 Software analyses are based on software fault models (defined by 

the Joint Interpretation Library for example [1])  

– Instruction skip [2] 

– Control-flow corruption (test inversion, …) [3][4] 

– Register/memory corruptions [5][6] 

 

 Problem: there are hardware fault effects that are not modelled in 

typical software fault models [7] 

 

 Effects obtained in simulation in a LowRISC v0.2 processor [8]: 

– Replace an argument by the last computed value  

– Make an instruction “transient” 

– Set an architectural register to 0 or 1 during a branching instruction 

– Commit a speculated instruction 

– … 

 

 

 



 
   

I. Introduction 

5 

 

 How to model these effects ? 

 

 How to perform efficient security analyses with these 

complex software fault models? 



 
   

II. Approach 

a. Overview 
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 Constraints:  

– Models very different from one another 

– Need to model certain structures of the processor 

– Need to allow static analyses 
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II. Approach 
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 VerifyPIN is a protected 4-digit PIN verification from the FISSC library [10], 

with the following countermeasures:  
– Hardened Booleans (0x55 for false and 0xAA for true)  

– Verification of the loop counter at the end of the loop  

– Duplicated Boolean tests.  
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III. Case study 

  diff=FALSE; status=FALSE; 

  for(i=0 ; i<4 ; i++){ 

      if(userPIN[i] != secretPIN[i])  diff=TRUE; 

  } 

  if(i != 4) countermeasure(); 

   

if(diff==FALSE){  

        if(FALSE==diff)  status=TRUE; 

        else countermeasure(); 

 } else status=FALSE; 

 
return status; 



 
   

III. Case study 
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III. Case study 
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 Frama-C Value analysis is based on abstract interpretation  

 Abstract interpretation [9] is used to abstract the semantics of an 

application. More precisely, it computes results on intervals instead 

of concrete values 
– Instead of analyzing the program with individual values, we can analyze “simultaneously”  

many values. 

  

 

 

 It computes an over-approximation of the results (sound and 

incomplete)  

 

 

  int a = {0..9} 

  a++;                     // a = {1..10} 

  int a = {0..9} 

  a++;                     // a = {1..10} 

  a = pow(a,2);     // a = {1..100}  

 



 
   

 

 Security property to check:  

 For any user PIN different from the secret PIN, do not authenticate 

 

 The user and secret PINs are abstracted. 
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III. Case study 
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 There are 50 injection times possible:  

– For 45, Frama-C proves  that the property is secure against all user inputs  

– The other 5 (which point to the same instruction) are potentially vulnerabilities 

 

 A manual analysis showed that: if the first digit of the secret 

PIN has a value 0, 1, 2 or 3, the fault can reduce the program 

to two loop iterations instead of four 

 The countermeasures are not effective in this case (in particular the one that 

checks the loop counter) 

 40% of the possible secret PIN are vulnerable  

 

 How easy would it be to find the vulnerability with classical 

tools (with concrete values) ? 

– The attack is successful if the first secret digit is 0-3 (40%) AND two loop 

iterations succeed (1%)  overall, only 0.4% to find the vulnerability with 

concrete values for a given injection. 

 

III. Case study 



 
   

 The attack was simulated at RTL 

 

 This case study shows that:  

– Complex fault models lead to undetected successful attacks   

  Justifies the use of the instrumentation tool 

 

– Some attacks only happen under specific circumstances, 

difficult to find using random, concrete data   

  Justifies the use of static analysis 
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III. Case study 



 
   

 

 The properties have to be invariant relative to the abstracted states 

 

 Example 

– First idea: set all digits to {0..9}    (secret: XXXX ; user: XXXX)       

 with the property : “if the PIN are different, do not authenticate” 

– Problem: Value analysis does not keep track of relations between variables 

– Solution: manually set a secret digit to a concrete value, and the 

corresponding user digit to everything except that value  

 (secret: 0XXX ; user: ≠XXX) 

 with the property: “do not authenticate” 
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IV. Discussion 

a.  Invariant properties 



 
   

 

 How efficient is the method to analyze a program, compared 

to testing every value individually ?  

– With the property: authentication ?   2.5x 

– With the property: loop count = 4 ?    10x 

– With 7-digit PIN instead of 4-digit: 2.5Mx and 10Mx 

 

 While very random, performances are better than simple 

executions of the program 
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IV. Discussion 

b.  Performances 



 
   

 

 Value analysis computes an over-approximation of the states 

 false alarms 

– No counter-examples 

– Need further analysis (with other tools or manually) 

 

 False alarms mean that the property could not be proved, but 

do not mean that it is not valid 
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IV. Discussion 

c.  False positives 



 
   

V. Conclusion 

 

 Our tool generates a C code that embeds complex 

software fault models 

 

 Frama-C Value analysis can then be used to verify 

that security properties hold for any user inputs. 
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V. Perspectives 

 

 Other types of analysis ? Other tools ? 

 

 Multiple injections ? 

 

 Structure of the mutant has been designed to play 

nicely with Frama-C Value analysis, but needs to de 

adapted for other forms of analyses. 
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Thanks for your attention ! 

 

Questions ? 
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V. Perspectives 

 Example:  
– In the mutant, should we represent memory as an array for 64-bit 

data, or 8-bit ? (in any case, loading and storing instructions is made 

so that every byte is accessible). 

– Both work for a simple execution of the code 

 

24 

Initially Mem[0]=0x00000000 Mem[0]=0x00 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 

Store {0..FF} at address 0 Mem[0]=  

    min:  0x00000000 

    max: 0x000000FF 

 

Mem[0]=0x00 – 0xFF 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 

Store {0..FF} at address 3 Mem[0]= 

    min:  0x00000000 

    max: 0xFF0000FF 

 

Mem[0]=0x00 – 0xFF 

Mem[1]=0x00 

Mem[2]=0x00 

Mem[3]=0x00 – 0xFF 



 
   

25 

[…] 

 0x06ac:    ADDI  x15 = x0 + 85 

[…] 

Instrumentation tool 

<model name=”FFM”> 

      <globals>       long fwd1 = 0,   fwd2 = 0;      </globals> 

      <gold_end>     fwd2 = fwd1;    fwd1 = res;      </gold_end> 

      <fault_ini>   if(injection_time==count) arg1=fwd2;  </fault_ini> 

</model> 

II. Approach 

b. Software Fault Injection 
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l06ac: // ADDI x15, x0, 85 

   arg1 = reg[0];  arg2 = 85;     // Decode 

 

  res = arg1 + arg2;     // Execute 

 

  reg[15]=res;  // Write-Back 

[…] 
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