
1

We are increasingly reliant on computers

2

... trusting them with our digital lives

Computers vulnerable to hacking

3

Need to break the exploitation cycle

• Once the stakes are high enough, attackers
will find a way to exploit any vulnerability

• Weak security defenses get deployed,
but are routinely circumvented in practice

• Security arms race

– defenders find clever ways to "increase attacker effort"

– attackers find clever ways around them

4

We need a deeper understanding that we can
use to build provably secure defenses

Web browsers are frequently hacked

5

Browser gets its input from the internet: a webpage (spiegel.de)

300+ resources loaded: html, image files, javascript, styles, ...

from 25+ different internet servers

4 are clearly for ads:
- ad.doubleclick.net
- ad.yieldlab.net
- amazon-adsystem.com
- adalliance.io

Malicious server can hack the browser

• send it an image that looks like an ad

• specially crafted to exploit a vulnerability
in the browser's image drawing engine

• this compromises the whole browser

– i.e. gives server complete control over it

• malicious server can now:

– steal the user's data

– take control of the victim's computer

– encrypt victim's data and ask for ransom

6

Compromised browser can steal user's data

I've just given my password to
the compromised browser
controlled by ad.doubleclick.net

7

Compartmentalization can help

compartment 2compartment 1

compromised not compromised

8

amazon.de password
is still secure!

Good news: browsers now compartmentalized!
• each tab indeed started in separate compartment

9

Bad news, so far:
• limited compartmentalization mechanism

– compartments coarse-grained
• can compartmentalize tabs, but not secrets within a tab

– compartments can't naturally interact
• even for tabs this required big restructuring of web browsers

Fine-grained compartmentalization

10

spiegel.de doubleclick.net

spiegel.de

adalliance.io

Fine-grained compartmentalization

11

Spiegel.de password
is still protected

facebook.com

spiegel.de

spiegel.de spiegel.de

Source language compartments

• Mozilla Firefox mostly implemented in C/C++

• Programming languages like C/C++, Java, F*, ...
already provide natural abstractions for
fine-grained compartmentalization:
– procedures, interfaces, classes, objects, modules, libraries, ...

– a compartment can be a library/module/class
or even an object (e.g., an image)

• In the source language fine-grained compartments
are easy to define and can naturally interact

12

Source language compartments

compartment C1 {

private var x;

private procedure p() {
x := get_counter();
x := password;

}
}

compartment C2 {
private var counter;
private var password;

public procedure get_counter() {
counter := counter + 1;
return counter;

}
}

13

←not allowed

Abstractions lost during compilation

• Computers don't run C/C++, Java, or F*
– Compiler translates Firefox from C/C++ to machine code instructions

• All compartmentalization abstractions lost during compilation
– no procedures, no interfaces, no classes, no objects, no modules, ...

• Secure compilation
– preserve abstractions through compilation, enforce them all the way down

• Shared responsibility of the whole compilation chain:
– source language, compiler, operating system, and hardware

• Goal: secure compartmentalizing compilation chain

14

Machine-code level

Compartment C1

<<check rx∈C1>>
load r ← [rx]

put rc ← apassword

<<check rx∈C1

or rx∈C2's interface>>
jump-and-link rx
sub r ← r-1

Compartment C2

put rc ← acounter

load r ← [rc]
add r ← r+1
store r → [rc]
jump ra

acounter : 42
apassword: ...

15

Securely enforcing source abstractions is challenging!

←not allowed

←not allowed compiled
get_counter
(public
procedure)

16

• What does it mean for a compartmentalizing
compilation chain to be secure?

– formal definition expressing end-to-end security guarantees

– these guarantees were not understood before

• Will start with an easier definition

– protecting a 1 trusted compartment from 1 untrusted one

– untrusted compartment arbitrary (e.g. compromised Firefox)

– trusted compartment has no vulnerabilities

17

This is not just hypothetical!

18

Mozilla shipping EverCrypt
verified crypto library

(also used by Microsoft, Linux, ...)

Formal verification milestone:
40.000+ lines of highly-efficient code,

mathematically proved to be free of vulnerabilities
(and functionally correct and side-channel resistant)

[POPL'16,'17,'18,'20,
ICFP'17,'19, ESOP'19,
CPP'18, SNAPL'17]

Firefox

Putting things into perspective

19

20.000.000 lines
+ external libraries

all unverified

40.000 lines

EverCrypt
(verified in F*)

Without compartmentalization interoperability is insecure:
if Firefox is compromised it can break security of verified code

Firefox

What does secure compartmentalization mean in this setting?

Preserving security against adversarial contexts

F* context

machine
code

context

EverCrypt

compiled

compiler

satisfies π

satisfies π
EverCrypt

no extra powerprotected

20

Where "security property" can e.g., be
safety or integrity or confidentiality [CSF'19]

F*context∀

machine
code

context∀

⇒
∀security property π

π = "EverCrypt's private key is not leaked"

Compartment 1

Extra challenges for our real security definition
[CSF'16, CCS'18]

• Program split into many mutually distrustful compartments

• We don't know which compartments will be compromised

– every compartment should be protected from all the others

• We don't know when a compartment will be compromised

– every compartment should receive protection until compromised

21

Compartment 1 Compartment 2 Compartment 3 Compartment 4Compartment 4 Compartment 5Compartment 5

Formalizing security of mitigations is hard

• We want source-level security reasoning principles

– easier to reason about security in the source language
if and application is compartmentalized

• ... even in the presence of undefined behavior

– can't be expressed at all by source language semantics!

– what does the following program do?

#include <string.h>

int main (int argc, char **argv) {

char c[12];

strcpy(c, argv[1]);

return 0;

} 22

Compartmentalizing compilation should ...

• Restrict spatial scope of undefined behavior

– mutually-distrustful components
• each component protected from all the others

• Restrict temporal scope of undefined behavior

– dynamic compromise
• each component gets guarantees

as long as it has not encountered undefined behavior

• i.e. the mere existence of vulnerabilities doesn't
necessarily make a component compromised

23

i0 i1 i2

C0 C1 C2

∃ a sequence of component compromises explaining the finite trace m
in the source language, for instance m=m1·m2·m3 and

↓ ↓ ↓ ⇝machine m

i0 i1 i2

C0 C1 C2
⇝source m1·Undef(C1)

↯
(1)

(2)
i0 i1 i2

C0 A1 C2
⇝source m1·m2·Undef(C2)

↯

(3)
i0 i1 i2

C0 A1 A2
⇝source m1·m2·m3

Finite trace m records which component encountered
undefined behavior and allows us to rewind execution

∃A1.

∃A2.

If then

Security
definition:

24

Prototype compartmentalizing compilation chain

25

Compartmentalized
source language

Compartmentalized
intermediate language

Buffers, procedures, compartments

Programmable
tagged architecture

Bare-bone machine

Intermediate language with

built-in compartmentalization

+Software enforcementHardware-accelerated enforcement

Machine code

[POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]

compartment C2 {
private var counter;
private var password;
public procedure get_counter() {
counter := counter + 1;
return counter;

}
}

Software-fault isolation

Compartment C1

<<check rx∈C1>>
load r ← [rx]

put rc ← apassword

<<check rx∈C1

or rx∈C2's interface>>
jump-and-link rx
sub r ← r-1

Compartment C2

a1: put rc ← acounter

a2: load r ← [rc]
a3: add r ← r+1
a4: store r → [rc]
a5: jump ra

acounter : 42
apassword: ...

26

Idea: rewrite C1's (& C2's) code to insert all the required checks

Challenges: checks complicated (uncircumventable, efficient)

←not enough

tpc’ tm3’

Micro-Policies [POPL'14, Oakland'15, ASPLOS'15, POST'18, CCS'18]

27

pc tpc

r0 tr0

r1 tr1

mem[0] tm0

“store r0 r1” tm1

mem[2] tm2

mem[3] tm3

tpc tr0 tr1 tm3 tm1

monitor
allow

tpc’ tm3’

tpc

tr0

tr1

tm1

store

software monitor’s decision is hardware cached

software-defined, hardware-accelerated, tag-based monitoring

disallow
policy violation stopped!

(e.g. out of bounds write)

tm3

tm3≠

tm3

=

Compartment C1

load r ← [rx]

put rc ← apassword

jump-and-link rx
sub r ← r-1

Compartment C2

a1: put rc ← acounter

a2: load r ← [rc]
a3: add r ← r+1
a4: store r → [rc]
a5: jump ra

acounter : 42
apassword: ...

Challenge: making sure returns go to the right place

pc@C1

@EntryPoint
@NoEntry

pc@C2

@NoEntry
@ ...

@NoEntry

28

Compartmentalization micro-policy

not
allowed

• Proving mathematically that a compartmentalizing
compilation chain achieves the security goal

– formally verifying the security of the whole compilation chain

– such proofs very difficult and tedious

• wrong conjectures survived for decades; 250pg for toy compiler

– we propose a more scalable proof technique

– focus on machine-checked proofs in the Coq proof assistant

– Proof-of-concept formally secure compilation chain in Coq

29

Compartmentalized
unsafe source

Compartmentalized
abstract machine

Buffers, procedures, components
interacting via strictly enforced interfaces

Micro-policy
machine

Bare-bone
machine

Simple RISC abstract machine with

build-in compartmentalization

Inline reference monitor enforcing:
- component separation
- procedure call and return discipline
(program rewriting, shadow call stack)

software fault isolation

Tag-based reference monitor enforcing:
- component separation
- procedure call and return discipline
(linear capabilities / linear entry points)

Verified

Systematically tested (with QuickChick)
30

generic proof technique 20K lines of Coq, mostly proofs

https://secure-compilation.github.io

https://secure-compilation.github.io/

– first definition supporting mutually distrustful
components and dynamic compromise

– software fault isolation or tag-based architecture

– scalable proof technique machine-checked in Coq

31

Making this more practical ... next steps:

• Scale formally secure compilation chain to C language
– allow pointer passing (capabilities for fine-grained memory sharing)

– eventually support enough of C to measure and lower overhead

– check whether hardware support (tagged architecture) is faster

• Extend all this to dynamic component creation
– rewind to when compromised component was created

• ... and dynamic privileges
– capabilities, dynamic interfaces, history-based access control, ...

• From robust safety to hypersafety (confidentiality) [CSF'19]

• Secure compilation of EverCrypt, miTLS, ...

32

My dream: secure compilation at scale

33

EverCrypt

memory safe
C component

legacy C
component

ASM
component

C language
+ components
+ memory safety

ASM language
(RISC-V + micro-policies)

language

Going beyond Robust
Preservation of Safety

Journey Beyond Full Abstraction (CSF 2019)

34

Carmine
Abate

Deepak
Garg Marco

Patrignani

Cătălin
Hrițcu

Jérémy
Thibault

MPI-SWS

Stanford
& CISPA

Inria Paris
Inria Paris Inria Paris

Rob
Blanco

Inria Paris

35

More secure

More efficient
to enforce

Easier to prove

Going beyond Robust Preservation of Safety [CSF'19]

trace properties
(safety & liveness)

hyperproperties
(noninterference)

relational
hyperproperties
(trace equivalence)

only integrity

+ data confidentiality

+ code confidentiality

No one-size-fits-all security criterion

realistically
enforceable?

current
proof
technique

– first definition supporting mutually distrustful
components and dynamic compromise

– software fault isolation or tag-based architecture

– scalable proof technique machine-checked in Coq

36

